

2017/TPTWG/WKSP1/004

The Impact of Overloaded Heavy Vehicles

Submitted by: Australian Road Research Board

Workshop on Regulating High Mass Heavy Road Vehicles for Safety, Productivity and Infrastructure Outcomes Brisbane, Australia 3-6 April 2017

The impact of overloaded heavy vehicles

The demanding freight task

Working together to deliver freight

Matching the vehicle to the road

EU vs US vs AUS

5

Road levels in Australia

Access to the road network

Most

6

Road levels in Australia

• The road network is assessed for each Level 1, 2, 3 & 4.

 $\bigcirc \bigcirc \bigcirc \bigcirc$

 $\overline{\mathbf{0}}$

Increasing mass and length

Access to the road network

Level 1 vehicle (unrestricted access)

Level 1 vehicle (unrestricted access)

Level 2 vehicle (major highways)

Level 2 vehicle (major highways – port precinct)

Level 2 vehicle (major highways – cotton harvest)

Level 4 vehicle (remote areas)

Level 4 - Quad road train

Level 3 – AAB Quad road train

Axle group limits

Vertical loading of pavement

ESA method – standard axles

Axle	Axle type	Reference load (t)
Ι	Single axle (single tyres)	5.40
Ī	Single axle (dual tyres or super singles)	8.20
II	Tandem axle (single tyres)	9.18
ĪĪ	Tandem axle (dual tyres or super singles)	13.80
III	Triaxle (dual tyres or super singles)	18.50
IIII	Quad axle (dual tyres or super singles)	22.50

ESA calculation method

22

Impacts on bridges – shear force

Source: ARTSA (2003)

Impacts on bridges – bending moment

Source: ARTSA (2003)

28

Access to the PBS Level 1 road network

M = 3L + 12.5 for $M \le 42.5$ t; and

M = L + 32.5 for $M \ge 42.5 t$

Access to the PBS Level 2 road network

M = 3L + 12.5 for $M \le 46.5$ t; and

M = 1.5L + 29.5 for $M \ge 46.5 t$

Access to the PBS Level 3 and Level 4 road networks

 $M = 3L + 12.5 \qquad \text{for all } M$

Source: NTC (2007)

Bridge formula

Bridge formula check

GCM: 68.5t

Efficiency gain = new payload/old payload

- = **5**6.0 t/34500tt
- = ~20% increase

Load calculations

Vehicle Manufacturer ratings

Specification	Vehicle 1	Vehicle 2	Vehicle 3
Application	Road train (tandem drive)	B-double	Truck and trailer
Make	Scania	Volvo	Mercedes
GVM	28,500 kg	27,700 kg	26,000 kg
GCM	130,000 kg	70,000 kg	55,000 kg
Steer axle capacity	7500 kg	6700 kg	7500 kg
Suspension capacity	7500 kg	6700 kg	7100 kg
Steer tyre capacity	8500 kg	7100 kg	7100 kg
Steer rims capacity	8500 kg	7300 kg	7300 kg
Front axle assembly rated capacity	7500 kg	6700 kg	7100 kg

Effect on vehicle Performance

